2,172 research outputs found

    Quantum Computers and Dissipation

    Get PDF
    We analyse dissipation in quantum computation and its destructive impact on efficiency of quantum algorithms. Using a general model of decoherence, we study the time evolution of a quantum register of arbitrary length coupled with an environment of arbitrary coherence length. We discuss relations between decoherence and computational complexity and show that the quantum factorization algorithm must be modified in order to be regarded as efficient and realistic.Comment: 20 pages, Latex, 7 Postscript figure

    Pressure of the Standard Model Near the Electroweak Phase Transition

    Full text link
    We extend our previous determination of the thermodynamic pressure of the Standard Model so that the result can be applied down to temperatures corresponding to the electroweak crossover. This requires a further resummation which can be cleanly organised within the effective theory framework. The result allows for a precise determination of the expansion rate of the Universe for temperatures around the electroweak crossover.Comment: 16 pages, 6 figures. v2: published versio

    The idea of robots as independent machines is science fiction

    Get PDF
    The world is unpredictable, and robots function in pre-defined narrow contexts, writes Antti Lyyr

    Advances in robotics will only get you so far: context is crucial

    Get PDF
    Robots and intelligent systems have gained a significant amount of attention recently. Various authors and reports detail advances in robotics and artificial intelligence and speculate on the role of humans in the robotic future. In such commentaries, robots are often presented as independent and tireless machines that are rational and efficient; they are removed from their creators and contexts of use. Unfortunately, as appealing as this image might be, it resembles more of a science fiction hero than the contextual nitty-gritty that revolves around the development and deployment of robotic applications. To obtain a more holistic picture, let us have a look at some contextual factors that surround robotics innovation today

    DFT study of graphene antidot lattices: The roles of geometry relaxation and spin

    Get PDF
    Graphene sheets with regular perforations, dubbed as antidot lattices, have theoretically been predicted to have a number of interesting properties. Their recent experimental realization with lattice constants below 100 nanometers stresses the urgency of a thorough understanding of their electronic properties. In this work we perform calculations of the band structure for various hydrogen-passivated hole geometries using both spin-polarized density functional theory (DFT) and DFT based tight-binding (DFTB) and address the importance of relaxation of the structures using either method or a combination thereof. We find from DFT that all structures investigated have band gaps ranging from 0.2 eV to 1.5 eV. Band gap sizes and general trends are well captured by DFTB with band gaps agreeing within about 0.2 eV even for very small structures. A combination of the two methods is found to offer a good trade-off between computational cost and accuracy. Both methods predict non-degenerate midgap states for certain antidot hole symmetries. The inclusion of spin results in a spin-splitting of these states as well as magnetic moments obeying the Lieb theorem. The local spin texture of both magnetic and non-magnetic symmetries is addressed

    Pressure of the Standard Model at High Temperatures

    Full text link
    We compute the pressure of the standard model at high temperatures in the symmetric phase to three loops, or to O(g^5) in all coupling constants. We find that the terms of the perturbative expansion in the SU(2) + Higgs sector decrease monotonically with increasing order, but the large values of the strong coupling constant g_s and the Yukawa coupling of the top quark g_Y make the expansion in the full theory converge more slowly. The final result is observed to be about 10% smaller than the ideal gas pressure commonly used in cosmological calculations.Comment: 30 pages, 4 figures. v2: one reference added, minor revisions, accepted for publication in JHE

    Rule-based Test Generation with Mind Maps

    Full text link
    This paper introduces basic concepts of rule based test generation with mind maps, and reports experiences learned from industrial application of this technique in the domain of smart card testing by Giesecke & Devrient GmbH over the last years. It describes the formalization of test selection criteria used by our test generator, our test generation architecture and test generation framework.Comment: In Proceedings MBT 2012, arXiv:1202.582

    With software updates, Tesla upends product life cycle in the car industry

    Get PDF
    With this system, any product can be open-ended and continuously in the making, argue Antti Lyyra and Kari Koskine

    Topological Solitons and Folded Proteins

    Get PDF
    We propose that protein loops can be interpreted as topological domain-wall solitons. They interpolate between ground states that are the secondary structures like alpha-helices and beta-strands. Entire proteins can then be folded simply by assembling the solitons together, one after another. We present a simple theoretical model that realizes our proposal and apply it to a number of biologically active proteins including 1VII, 2RB8, 3EBX (Protein Data Bank codes). In all the examples that we have considered we are able to construct solitons that reproduce secondary structural motifs such as alpha-helix-loop-alpha-helix and beta-sheet-loop-beta-sheet with an overall root-mean-square-distance accuracy of around 0.7 Angstrom or less for the central alpha-carbons, i.e. within the limits of current experimental accuracy.Comment: 4 pages, 4 figure
    • …
    corecore